The time singular limit for a fourth-order damped wave equation for MEMS
نویسندگان
چکیده
We consider a free boundary problem modeling electrostatic microelectromechanical systems. The model consists of a fourth-order damped wave equation for the elastic plate displacement which is coupled to an elliptic equation for the electrostatic potential. We first review some recent results on existence and nonexistence of steady-states as well as on local and global well-posedness of the dynamical problem, the main focus being on the possible touchdown behavior of the elastic plate. We then investigate the behavior of the solutions in the time singular limit when the ratio between inertial and damping effects tends to zero.
منابع مشابه
Simulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملExistence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کاملExponential attractors for singularly perturbed damped wave equations: A simple construction
This note is concerned with the damped wave equation ε∂ttu+ ∂tu− Δu+ f (u) = g depending on a small parameter ε and with the corresponding parabolic equation ∂tu− Δu+ f (u) = g obtained in the singular limit ε → 0. The existence of a family Mε of exponential attractors which is Hölder continuous with respect to ε is proved.
متن کاملFinding the Optimal Place of Sensors for a 3-D Damped Wave Equation by using Measure Approach
In this paper, we model and solve the problem of optimal shaping and placing to put sensors for a 3-D wave equation with constant damping in a bounded open connected subset of 3-dimensional space. The place of sensor is modeled by a subdomain of this region of a given measure. By using an approach based on the embedding process, first, the system is formulated in variational form;...
متن کاملA fourth-order model for MEMS with clamped boundary conditions
The dynamical and stationary behaviors of a fourth-order equation in the unit ball with clamped boundary conditions and a singular reaction term are investigated. The equation arises in the modeling of microelectromechanical systems (MEMS) and includes a positive voltage parameter λ. It is shown that there is a threshold value λ∗ > 0 of the voltage parameter such that no radially symmetric stat...
متن کامل